Comparisons of MIPS disassembly and decompilation
Last updated
Was this helpful?
Last updated
Was this helpful?
Here are some side-by-side comparisons of disassembly and decompiler for MIPS. Please maximize the window too see both columns simultaneously.
The following examples are displayed on this page:
This is a very simple code to decompile and the output is perfect. The only minor obstacle are references through the global offset table but both IDA and the Decompiler handle them well. Please note the difference in the number of lines to read on the left and on the right.
Sorry for another long assembler listing. It shows that for MIPS, as for other platforms, the decompiler can recognize 64-bit operations and collapse them into very readable constructs.
We recognize magic divisions for MIPS the same way as for other processors. Note that this listing has a non-trivial delay slot.
The previous example was a piece of cake. This one shows a tougher nut to crack: there is a jump to a delay slot. A decent decompiler must handle these cases too and produce a correct output without misleading the user. This is what we do. (We spent quite long time inventing and testing various scenarios with delay slots).
We support both big-endian and little-endian code. Usually they look the same but there may be subtle differences in the assembler. The decompiler keeps track of the bits involved and produces human-readable code.
MicroMIPS, as you have probably guessed, is supported too, with its special instructions and quirks.
The MIPS processor contains a number of complex floating point instructions, which perform several operations at once. It is not easy to decipher the meaning of the assembler code but the pseudocode is the simplest possible.
A compiler sometime uses helpers; our decompiler knows the meaning of the many helpers and uses it to simplify code.