LogoLogo
IDA 9.1
IDA 9.1
  • Welcome to Hex-Rays docs
    • What's new?
  • Getting Started
    • Install IDA
    • Licensing
    • Basic Usage
    • What's next?
  • User Guide
    • User Interface
      • Menu Bar
        • File
          • Load file
          • Script File
          • Script command
          • Produce output files
          • Invoke OS Shell
          • Take database snapshot
          • Save database
          • Save database as...
          • Abort IDA
          • Exit IDA
        • Edit
          • Export data
          • Undo an action
          • Redo an action
          • Clear undo history
          • Disable undo
          • Convert to instruction
          • Convert to data
          • Convert to string literal
          • Convert to array
          • Undefine a byte
          • Give Name to the Location
          • Operand types
            • Offset
            • Number
            • Perform en masse operation
            • Convert operand to character
            • Convert operand to segment
            • Complex Offset Expression
            • Convert operand to symbolic constant (enum)
            • Convert operand to stack variable
            • Change operand sign
            • Bitwise negate operand
            • User-defined operand
            • Set operand type
          • Comments
          • Functions
          • Structs
          • Segments
          • Patch core
          • Other
            • Rename Any Address
          • Plugins
        • Jump
          • Center current line in window
          • Problems List
        • Search
          • REGULAR EXPRESSION SYNTAX SUMMARY
        • View
          • Open subviews
          • Graphs
          • Arrows window
          • Database snapshot manager
          • Highlighting identifiers
          • Browser options
          • Lumina options
          • Assembler level and C level types
          • C++ type details
          • Bookmarks window
          • Calculator
          • View segment registers
          • View Internal Flags
          • Hide
          • Unhide
          • Del hidden range
          • Hide all items
          • Unhide all items
          • Setup hidden items
        • Debugger
          • Debugger window
          • Process Control
            • Start process
            • Process options
            • Pause process
            • Continue (backwards)
            • Terminate process
            • Step into
            • Step into (backwards)
            • Step over
            • Step over (backwards)
            • Run to cursor
            • Run to cursor (backwards)
            • Run until return
            • Attach to process
            • Detach from process
            • Set current ip
            • Show application screen
          • Breakpoints
          • Watches
          • Tracing
          • Source code view
            • Watch view (source level)
          • Process Memory
            • Take memory snapshot
            • Manual memory regions
            • Refresh memory
          • Thread list
          • Module list
          • Stack trace
          • Exceptions
          • Debugger options
          • Switch debugger
        • Lumina
        • Options
          • Low & High Suspicious Operand Limits
        • Windows
          • Rename a stack variable
          • Miscellanous Options
          • Environment variables
          • Reset Hidden Messages
          • Various dialog help messages
          • Output window
        • List of all menu options
      • Desktops
      • Command line
      • License Manager
      • How To Use List Viewers in IDA
      • Database conversion from idb to i64
    • Disassembler
      • Interactivity
      • Background Analysis
      • Graph view
        • Graphing tutorial
      • Proximity view
      • Navigation
        • Anchor
        • How to Enter a Segment Value
        • How to Enter a Number
        • How to Enter an Identifier
        • How to enter text
        • How to Enter an Address
      • Disassembly Gallery
        • Philips 51XA-G3
        • 6502 and 65C02 Disassembler
        • 6301, 6303, 6800, 6801 and 6803 Disassembler
        • 68040, Amiga
        • 6805 Disassembler
        • 6808 Disassembler
        • 6809 OS9 Flex Disassembler
        • 6809 Disassembler
        • 6811 Disassembler
        • 68HC12 Disassembler
        • 68HC16 Disassembler
        • 68k Amiga Disassembler
        • 68k Mac OS
        • 68k Palm Pilot
        • Unix COFF
        • NEC 78k0 and 78k0s Processor
        • 80196 Processor
        • 8051 Disassembler
        • Analog Devices 218x.
        • Alpha Processor – NT COFF
        • Alpha Processor – Unix ELF
        • Android ARM Executables (.elf)
        • ARC Processor
        • ARM Processor EPOC App
        • ARM Processor EPOC PE File
        • ARM Processor EPOC ROMFile
        • EPOC SIS File Handler
        • ARM Processor iOS (iPhone): Unlock
        • ARM Processor iOS (iPhone): Objective-C metadata
        • ARM Processor iOS (iPhone): Objective-C Instance variables
        • ARM Processor iOS (iPhone): Parameter Identification & Tracking (PIT)
        • ARM Processor iOS (iPhone): Start
        • ARM Processor iOS (iPhone): Switch statements
        • ARM Processor iOS (iPhone): C++ signatures
        • ARM Processor iOS (iPhone): Write
        • ARM Processor: Linux ELF
        • ARM Processor: AOF SDK
        • ARM Processor: Windows CE COFF Format
        • ARM Processor: Windows CE PE Format
        • ATMEL AVR Disassembler
        • C166 Processor
        • C166 Processor with ELF file
        • Rockwell C39
        • Microsoft .NET CLI Disassembler. VisualBasic library
        • CR16
        • Android Dalvik Executables (.dex)
        • Microsoft .NET CLI Disassembler
        • DSP56K
        • Fujitsu FR (.elf)
        • Gameboy
        • H8 300: COFF FILE Format
        • H8 300s: COFF FILE Format
        • H8 500
        • HPPA Risc Processor: HP-UX SOM
        • i51
        • i860
        • Intel i960
        • Intel IA-64 (Itanium)
        • Java Bytecode
        • Angstrem KR 1878
        • Renesas/Hitachi M16C
        • Renesas/Hitachi M32R
        • M740
        • M7700
        • M7900
        • MIPS Processor: Nintendo N64
        • MIPS R5900 Processor : Sony bin
        • MIPS Processor: Sony ELF
        • MIPS Processor: Sony PSX
        • MIPS Processor: Sony PSX
        • MIPS Processor: Unix COFF File Format
        • MIPS Processor: Unix ELF File Format
        • MIPS Processor: Windows CE PE File Format
        • MIPS Processor: Windows CE PE2 File Format
        • Panasonic MN102
        • Atmel OAK DSP
        • 80×86 Architecture: DOS Extender
        • 80×86 Architecture: Watcom Runtime
        • 80×86 Architecture: Geos APP
        • 80×86 Architecture: Geos DRV
        • 80×86 Architecture: Geos LIB
        • 80×86 Architecture: GNU COFF Format
        • 80×86 Architecture: OS/2 Linear Executable Format
        • 80×86 Architecture: Netware NLM
        • 80×86 Architecture: QNX Executable
        • 80×86 Architecture: Watcom Runtime
        • 80×86 Architecture: Windows OMF
        • 80×86 Architecture: Windows Portable Executable Format
        • 80×86 Architecture: Windows Virtual Device Driver
        • 80×86 Architecture: Windows 16 bits DLL
        • X-Box Disassembler
        • PDP 11: SAV File
        • PIC
        • PIC 12xx
        • Power PC AIF ECOFF file Format
        • Power PC Linux ELF
        • Mac OS PEF File
        • Mac OS X File
        • Windows NT PE File
        • Hitachi SH-1 Processor
        • Hitachi SH-3 Processor: Windows CE COFF format
        • Hitachi SH-3 Processor: Windows CE PE format
        • Hitachi SH-4 Processor: ELF File Format
        • Hitachi SH-4 Processor: Windows CE PE File Format
        • Super Nintendo Entertainement System (SNES)
        • SPARC Solaris COFF
        • SPARC Solaris ELF
        • SPARC Sun ELF
        • SPARC Sun ELF SO
        • ST 20C4
        • ST 7
        • ST 9
        • Toshiba TLCS 900
        • TMS 320c2 COFF
        • TMS 320c5
        • TMS 320c54
        • TMS 320c6 COFF File Format
        • TRICORE
        • SunPlus unSP
        • NEC V850
        • Z180 COFF File Format
        • Z380 COFF File Format
        • Z8
        • Z80
      • Supported processors
      • Supported file formats
        • Windmp file loader
      • Bitfields
        • Bit Fields tutorial
      • Structures tutorial
      • Union tutorial
      • Variable length structures tutorial
      • Data types, operands and constructs
      • Packed executables
        • Unpack hostile PE executable
    • Decompiler
      • Prerequisites
      • Quick primer
      • Exception handler
      • Introduction to Decompilation vs. Disassembly
        • Comparisons of ARM disassembly and decompilation
        • Comparisons of PowerPC disassembly and decompilation
        • Comparisons of MIPS disassembly and decompilation
        • Hex-Rays v7.4 vs. v7.3 Decompiler Comparison Page
        • Hex-Rays v7.3 vs. v7.2 Decompiler Comparison Page
        • Hex-Rays v7.2 vs. v7.1 Decompiler Comparison Page
      • Interactive operation
        • Rename
        • Set type
        • Set number representation
        • Edit indented comment
        • Edit block comment
        • Hide/unhide C statements
        • Split/unsplit expression
        • Force call type
        • Set call type
        • Add/del variadic arguments
        • Del function argument
        • Add/delete function return type
        • Jump to cross reference
        • Jump to cross reference globally
        • Generate HTML file
        • Mark/unmark as decompiled
        • Copy to assembly
        • Show/hide casts
        • Reset pointer type
        • Convert to struct *
        • Create new struct type
        • Split variable
        • Select union field
        • Jump to paired paren
        • Collapse/uncollapse item
        • Map to another variable
      • Batch operation
      • Configuration
      • Third party plugins
      • Floating point support
      • Support for intrinsic functions
      • Overlapped variables
      • gooMBA
      • Failures and troubleshooting
      • FAQ
      • Limitations
      • Tips and tricks
    • Debugger
      • Instant debugger
      • Remote debugging
        • Remote iOS Debugger
        • Android debugger
        • Dalvik debugger
        • Remote GDB Debugger
          • Remote GDB Debugger options
          • Debugging with gdbserver
          • Debugging with VMWare
          • Debugging with OpenOCD
          • Debugging with QEMU
          • External programs and GDB Debugger
          • Debugging code snippets with QEMU
        • PIN debugger
          • Building the PIN tool
          • Connecting a remote PIN tool instance from IDA
          • PIN support for MacOSX
        • Replayer debugger
        • Bochs debugger
          • Bochs Disk Image operation mode
          • Bochs IDB operation mode
          • Bochs PE operation mode
          • Bochs debugger FAQ
      • Local debugging
        • WinDbg Debugger
        • WinDbg: Time Travel Debugging
        • Linux debugger
        • Intel/ARM macOS debugger
      • Debugger tutorials
        • Debugging Dalvik Programs
        • IDA Win32 Local Debugging
        • IDA Linux Local Debugging
        • IDA Linux to Win64 Debugging
        • IDA Win32 to Linux Debugging
        • Debugging Mac OSX Applications with IDA Pro
        • Debugging iOS Applications using CoreDevice (iOS 17 and up)
        • Debugging iOS Applications with IDA Pro
        • Debugging Linux Applications locally
        • Debugging Linux/Windows Applications with PIN Tracer module
        • Debugging Windows Applications with IDA Bochs Plugin
        • Debugging Windows Applications with IDA WinDbg Plugin
        • Using the Bochs debugger plugin in Linux
        • Debugging Windows Kernel with VMWare and IDA WinDbg Plugin
        • Debugging Linux Kernel under VMWare using IDA GDB debugger
        • Windows Debugger Hub
        • Linux Debugger
        • Debugging a Windows executable locally and remotely
        • Debugging the XNU Kernel with IDA Pro
        • Remote debugging with IDA Pro
        • IDA Scriptable Debugger: overview
          • IDA Scriptable Debugger: scriptability
        • Debugging code snippets with QEMU debugger (a la IDA Bochs debugger)
        • Trace Replayer and managing traces
        • Using IDA Pro's tracing features
        • Working with PIN
        • Appcall
    • Creating Signatures
      • FLIRT
        • IDA F.L.I.R.T. Technology: In-Depth
        • Generate FLIRT signature file
        • Supported Compilers
          • Turbo Pascal
          • Delphi
      • Makesig
    • Types
      • Creating Type Libraries
        • IDAClang
        • TILIB
    • Configuration
      • Configuration files
      • Command line switches
      • Keyboard macros
      • UI/Fonts/Themes
      • Shortcuts
      • Customizing IDA
      • CSS-based styling
    • Teams
      • Diffing and Merging Databases with IDA Teams
      • Teams lc command reference manual
      • hv command reference manual
      • Hex-Rays Vault’s visual client user manual
    • Lumina
      • lc command reference manual
    • Plugins
      • Plugin options
      • Plugins shipped with IDA
        • Swift plugin
        • Golang plugin
        • Rust plugin
        • picture_search
        • Objective-C Analysis Plugin
        • DYLD Shared Cache Utils
        • Borland RTTI descriptors plugin
        • DWARF plugin
        • Patfind plugin
        • IDA Feeds
          • FLIRT Signature Bundle
      • Publishing your plugins
    • Helper Tools
    • idalib
    • Third-Party Licenses
      • Apache License for Ghidra
      • Apache License for LLVM
      • Common Public License Version 1.0
      • APPLE PUBLIC SOURCE LICENSE
      • PCRE2 LICENCE
      • GNU Lesser General Public License v2.1 for libiberty
    • Floating licenses
  • Developer Guide
    • C++ SDK
      • Getting Started
      • Reference
      • Using the Decompiler SDK: Decompiler plugin
      • Examples
      • How to create a plugin?
      • Porting Guide from IDA 8.x to 9.0
    • IDAPython
      • Getting Started
      • Reference
      • Examples
      • How to create a plugin?
      • Porting Guide from IDA 8.x to 9.0
    • IDC
      • Core concepts
        • Expressions
        • Statements
        • Functions
        • Variables
        • Constants
        • Exceptions
        • Classes
        • Predefined symbols
        • loader_input_t class
        • Slices
      • Reference
      • Examples
        • Analyzing encrypted code
  • Admin Guide
    • Lumina server
    • Teams server
    • License server
      • Hex-Rays License Server Migration Guide
      • Hex-Rays License Server on WSL
  • Release Notes
    • IDA 9.1
    • IDA 9.0sp1
    • IDA 9.0
    • IDA 8.5
    • IDA 8.4sp2
    • IDA 8.4sp1
    • IDA 8.4
    • IDA 8.3
    • IDA 8.2sp1
    • IDA 8.2
    • IDA 8.1
    • IDA 8.0sp1
    • IDA 8.0
    • IDA 7.7sp1
    • IDA 7.7
    • IDA 7.6sp1
    • IDA 7.6
    • IDA 7.5sp3
    • IDA 7.5sp2
    • IDA 7.5sp1
    • IDA 7.5
    • IDA 7.4sp1
    • IDA 7.4
    • IDA 7.3
      • IDA 7.3 Undo: IDA can do it
    • IDA 7.2
      • IDA 7.2 The Mac Rundown
    • IDA 7.1
      • IDA 7.1 Debugger API 7.1 Porting Guide
    • IDA 7.0sp1
    • IDA 7.0
      • Internationalization (i18n)
      • Automatic discovery of string literals
      • API 7.0 Porting Guide
      • IDAPython backward compatibility
    • IDA 6.95
    • IDA 6.9
    • IDA 6.8
    • IDA 6.7
    • IDA 6.6
    • IDA 6.5
    • IDA 6.4
    • IDA 6.3
    • IDA 6.2
    • IDA 6.1
    • IDA 6.0
    • IDA 5.7
    • IDA 5.6
    • IDA 5.5
      • 5.5 Gallery
      • 5.5 Comparison
    • IDA 5.4
    • IDA 5.3
    • IDA 5.2
    • IDA 5.1
    • IDA 5.0
    • IDA 4.9SP
    • IDA 4.9
    • IDA 4.8
    • IDA 4.7
    • IDA 4.6
    • IDA 4.x
    • IDA 3.x
    • Cumulative bugfix for IDA
  • Archive
    • IDA’s Windbg plugin
    • IDA’s Bochs debugger plugin
    • IDA’s Bochs debugger plugin 2
    • DosWin32
    • Hex-Rays v1.1 vs. v1.0 Decompiler Comparison Page
    • Hex-Rays v1.2 vs. v1.1 Decompiler Comparison Page
    • Hex-Rays v1.3 vs. v1.2 Decompiler Comparison Page
    • Hex-Rays v1.6 vs. v1.5 Decompiler Comparison Page
    • Hex-Rays v1.7 vs. v1.6 Decompiler Comparison Page
    • Costly Greetings – An Adventure In Hostile Code Analysis
    • An Adventure In Hostile Code Analysis: Description
    • An Adventure In Hostile Code Analysis: Disassembly
    • Improved code flow analysis
    • Program Navigation Bar
    • IDA Home Contest
    • Pimp My IDA: vote results
    • Turning off IDA 6.x compatibility in IDAPython
    • Porting guide for IDA 7.4 turning off IDA 6.x API backwards-compatibility by default
    • Porting guide for IDA 7.4 IDAPython and Python 3
    • IDAPython and Python 3
    • Porting guide for changes in IDAPython-on-Python-3 APIs
    • Debugging iOS Applications With IDA
    • IDA Win32 to Win32 Debugging
    • IDA Win32 to Win64 Debugging
    • Legacy license server: Floating Licenses
      • Installing on Linux
      • Installing on Windows
      • Installing on OS X
    • Decompiler Installation
    • Enumerated types tutorial
  • Bug Bounty
Powered by GitBook
LogoLogo

Need Help?

  • FAQs
  • Support

Community

  • Forum
  • Plugins

Resources

  • Blog
  • Download center

© 2025 Copyright Hex-Rays

On this page

Was this helpful?

Export as PDF
  1. User Guide
  2. Disassembler
  3. Packed executables

Unpack hostile PE executable

Last updated 1 day ago

Was this helpful?

Several days ago we received, from an IDA user, a small harmless executable (; unpack twice with the password 123) that could not be debugged in IDA.

Breakpoints would not break and, the program would run out of control, as if the debugger was too slow to catch it. When we first loaded the program in IDA, it complained that it could not find the imports section. That type of situation is frequent with protected executables, packed worms etc….

The second remarkable thing is that the entry point jumping… nowhere. Addresses marked in red usually reflect a location that IDA can’t resolve.

This code employs attempts to prevent the disassembly and, as a result, the default load parameters are not appropriate. This type of obfuscated code demonstrates the problems inherent to the a one-click approach.

But what if we investigate a bit further, for example by loading the file in the manual mode? In this mode the user can specify which sections of the file should be loaded. To be on the safe side, let’s load all sections. Let’s uncheck the ‘make imports section’ checkbox to avoid the “missing imports” message. We have this:

Once we have answered the questions about each section of the file we will get this listing: much better!

Now that we got rid of the unresolved address, we can analyze the program. The first instruction of our executable is a jump, and it jumps to the program header: loc_400158. Hmmmm, the program header is not supposed to contain any code but this program abuses the conventions and jumps to it. An interesting side effect results of the fact that the program header is read only. That could explain why breakpoints can’t be put there.

Anyway, let’s see how the program works. We see that the program loads a pointer into ESI which gets immediately copied to EBX:

HEADER:00400158                 mov     esi, offset off_40601C
HEADER:0040015D                 mov     ebx, esi

(Ctrl-O converted the hexadecimal number in the first instruction to a label expression)

Later the value of EBX is used to call a subroutine:

HEADER:00400169                 call    dword ptr [ebx]

Calls like this are frequent in the listing, so let’s find out the function and what it does. Apparently a pointer to the function is located here:

__u_____:0040601C off_40601C      dd offset __ImageBase+130h

If we click on __ImageBase, what we’ll see is an array of dwords. IDA represented the program header as an array which is incorrect in our case. We undefine the array (hotkey U), go back to the pointer (hotkey Esc) and follow the pointer again. This time we will end up at the address 0x400130 which should contain a function. We are sure of that because the instruction at 0x400169 calls 0x400130 indirectly. We press P (create procedure or function) to tell IDA that there should be a function at the current address.While the function is now on screen, we only have half of it! It seems that the person who wrote that program wanted it to obfuscate it and separated the function into several pieces. IDA now knows how to deal with those fragmented functions and displays information about the other function parts on the screen:

But it has only references to other parts. It would be nice to have the whole function on one page. There is a special command to help us: the command to generate flow charts of functions in IDA, it’s hotkey is F12. This command is especially interesting for fragmented functions like ours because all pieces of the function will be on the screen:

It might be interesting to display the flow chart of the main function (very long function, keep scrolling!):

Since the breakpoint is located in the program header, and the program header is write protected by the system, we cannot use a plain software breakpoint. We have to use a hardware breakpoint: first press F2 to create a breakpoint, then right click and select “edit breakpoint” to change it to a hardware breakpoint on the “execution” event:

After having set the breakpoint, we start the debugger by pressing F9. When we reach the breakpoint, the program will be unpacked into the ‘MEW’ segment. We jump there and convert everything to code (the fastest way to do this is to press F7 at the breakpoint).

Now we have a very nice listing but with one major problem: it is ephemeral – as soon as we’ll stop the debugging session, the listing will disappear.

The reason is of course that the listing displays the memory content and that the memory will cease to exist when the process will die. It would be nice to be able to save the memory into the database and continue the analysis without the debugger. We will think about adding that feature into future versions of IDA, but meanwhile we’ll have to do it manually. By “manually” we do not mean to copy byte one by one on a paper, of course. We can use the built-in IDC language to achieve this.

There are two things to be saved because they will disappear when the debugger stops: the memory contents and the imported function names. The memory contents can be saved by using the following 4-line script:

auto fp, ea;
fp = fopen("bin", "wb");
for ( ea=0x401000; ea < 0x406000; ea++ )
  fputc(Byte(ea), fp);

When the script has run, we will have a file named “bin” on the disk. It will contain the bytes from the “MEW” segment. As you can see, I hardcoded the hexadecimal addresses: after all, it is a disposable script intended to be run once.

We have to save the imported function names too. Look at the call at 0x401002, for example:

MEW:00401002 call    sub_4012DC

If we want to know the name of the called function, we press Enter several times to follow the links and finally get the name:

kernel32.dll:77E7AD86
kernel32.dll:77E7AD86 kernel32_GetModuleHandleA:              ; CODE XREF: sub_4012DCj
kernel32.dll:77E7AD86                                         ; DATA XREF: MEW:off_402000o
kernel32.dll:77E7AD86 cmp     dword ptr [esp+4], 0

When we quit the debugger, the kernel32.dll segment will disappear from the listing along with all its names, instructions, functions, everything. We have to copy the function names before that:

auto ea, name;
for (ea = 0x401270; ea<0x4012e2; ea =ea+6 )
{
  name = Name(Dword(Dfirst(ea)));               /* get name */
  name = substr(name, strstr(name, "_")+1, -1); /* drop the prefix */
  MakeName(ea, name);
}

Now that we have run those scripts, we may stop the debugger (press Ctrl-F2) and copy back the memory contents. The “Load additional binary file” command in the File, Load menu is the way to go:

Please note that it is not necessary to create a segment, it already exists (clear the “create segments” flag). Also, the address is specified in paragraphs, i.e. it is shifted to the right by 4.

Load the file, press P at 0x401000 and voila, you have a nice listing:

The rest of the analysis is a pleasant and agreeable task left to the reader as…. you guessed it.

A quick glance at the flow chart reveals that there is only one exit from the function at its “ret” instruction (0x4001FA). We could put a breakpoint there and let the program run. Now, before we do that, let’s repeat that it is not a good idea to run untrusted code on your computer. It is much better to have a separate “sandbox” machine for such tests, for example using the . Therefore, IDA displays a warning when a new file is going to be started under debugger: ignore at your own risk.

remote debugging facilities IDA offers
test00.zip